Graphene oxide and its hybrids as photocatalysts for solar fuels

Kuei-Hsien Chen

Institute of Atomic and Molecular Sciences, Academia Sinica; and Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan Email: chenkh168@gmail.com

Photocatalytic conversion of carbon dioxide (CO₂) to hydrocarbons such as methanol and ethanol makes possible simultaneous solar energy harvesting and CO₂ reduction, two birds with one stone for the energy and environmental issues. This work describes a high photocatalytic conversion of CO₂ to methanol using graphene oxides (GOs) as a promising photocatalyst. Modified Hummer's method has been applied to synthesize the GO based photocatalyst for the enhanced catalytic activity. The photocatalytic CO₂ to methanol conversion rate on modified graphene oxide (GO-3) is $0.172 \, \square$ mole g-cat⁻¹ h⁻¹ under visible light, which is six-fold higher than the pure TiO₂ (P-25). Further, Cu and MoS₂ nanoparticles were deposited on GO as co-catalysts to enhanced the photocatalysis reaction. Not only methanol, but also acetaldehyde were detected. Total solar to fuel yield of 6.8 \square mole g-cat⁻¹ h⁻¹ have been achieved, which is 240 times enhancement relative to the commercial P-25 photocatalyst. Detailed study one the mechanism and selectivity of the products will be addressed in this paper.

Reference:

[1] H.C. Hsu et al., Nanoscale 5, 262-268 (2013).